Parallel Readout of Pathway-Specific Inputs to Laminated Brain Structures
نویسندگان
چکیده
Local field potentials (LFPs) capture the electrical activity produced by principal cells during integration of converging synaptic inputs from multiple neuronal populations. However, since synaptic currents mix in the extracellular volume, LFPs have complex spatiotemporal structure, making them hard to exploit. Here we propose a biophysical framework to identify and separate LFP-generators. First we use a computational multineuronal model that scales up single cell electrogenesis driven by several synaptic inputs to realistic aggregate LFPs. This approach relies on the fixed but distinct locations of synaptic inputs from different presynaptic populations targeting a laminated brain structure. Thus the LFPs are contributed by several pathway-specific LFP-generators, whose electrical activity is defined by the spatial distribution of synaptic terminals and the time course of synaptic currents initiated in target cells by the corresponding presynaptic population. Then we explore the efficacy of independent component analysis to blindly separate converging sources and reconstruct pathway-specific LFP-generators. This approach can optimally locate synaptic inputs with subcellular accuracy while the reconstructed time course of pathway-specific LFP-generators is reliable in the millisecond scale. We also describe few cases where the non-linear intracellular interaction of strongly overlapping LFP-generators may lead to a significant cross-contamination and the appearance of derivative generators. We show that the approach reliably disentangle ongoing LFPs in the hippocampus into contribution of several LFP-generators. We were able to readout in parallel the pathway-specific presynaptic activity of projection cells in the entorhinal cortex and pyramidal cells in the ipsilateral and contralateral CA3. Thus we provide formal mathematical and experimental support for parallel readout of the activity of converging presynaptic populations in working neuronal circuits from common LFPs.
منابع مشابه
In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier
Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...
متن کاملErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia
The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4(-/-) HER4(heart) KO mice to study the neurodevelopmental insul...
متن کاملKinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملDelamination Analysis in Composite Root of a Carbon-Layer Reinforced Wind Turbine Blade
The inconsistencies accompanied with material properties tipically cause the rise of delamination risk in composites made of different types of glass and crabon fibers. In this study, the delamination of a composite beam reinforced with a carbon layer under bending load is investigated. To this end, a small piece of a wind turbine blade root in the form of a heterogeneous laminated plate is sim...
متن کاملComparison of Stiffness and Failure Behavior of the Laminated Grid and Orthogrid Plates
The present paper investigates the advantages of a new class of composite grid structures over conventional grids. Thus far, a known grid structure such as orthogrid or isogrid has been used as an orthotropic layer with at most in-plane anisotropy. The present laminated grid is composed of various numbers of thin composite grid layers. The stiffness of the structure can be adjusted by choosing ...
متن کامل